P425/1
PURE MATHEMATICS
July/august 2024
3 HOURS

JOURNEY OF SUCCESS EXAMINATIONS BOARD

Uganda advanced certificate of education MOCK EXAMINATIONS PURE MATHEMATICS Paper 1

3 HOURS

INSTRUCTIONS TO CANDIDATES

- Answer all the eight questions in section A and any five from section B.
- Any additional question(s) will **not** be marked.
- All working **must** be shown clearly.
- Begin each question on a fresh sheet of paper.
- Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

Answer all questions in this section

1. Show that (x-3) is a factor of $x^3-19x+30=0$. Hence determine the other roots.

(05 marks)

- 2. Determine the equation of the normal to the parabola with focus S(3,0) at the point (3,6)**(05 marks)**
- 3. Find the values of *k* for which the following equations have equal roots.

a)
$$3x^2 + kx + 12 = 0$$

b)
$$x^2 - 5x + k = 0$$
 (05 marks)

4. Given the quadratic equation $ax^2 + bx + c = 0$, show that roots of x are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{05 marks}$$

 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ (05 mark 5. If the surface area *S* of the cylinder($S = 2\pi r^2 + 2\pi rh$) is kept constant, show that the volume $(V = \pi r^2 h)$ of the cylinder will be maximum when h = 2r.

(05 marks)

- 6. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t in the expressions $x = t^2$ and y = 4t 1**(05 marks)**
- 7. Sketch the circle $x^2 + y^2 + 2x 4y 4 < 0$ and show the required region. (05 marks)
- 8. The sum of the three terms in A.P is 30 and the sum of their squares is 398. Find the numbers. **(05 marks)**

SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks

a) Prove that for all integral values of n, $(\cos\theta + i\sin\theta)^n = (\cos n\theta + i\sin n\theta)$.

Hence find the value of $(\cos \frac{1}{4}\pi + i \sin \frac{1}{4}\pi)^{12}$

(06 marks)

- b) Use De-moivre's theorem to show that; $tan3A = \frac{3tanA tan^3A}{1 3tan^2A}$ (07 marks)
- 10 a) Solve the equation 4tan θ tan $2\theta = 1$ from $0 \le \theta \le 360^{\circ}$
 - b) Prove that; $tanA + tan B = \frac{\sin(A+B)}{\cos A \cos B}$

(03 marks)

(04 marks)

c) Without using tables or calculator, evaluate tan 195°

(03 marks)

TURN OVER

11 a) Find the area enclosed by the x-axis, the curve $y = 3x^2 + 2$ and the straight lines x = 3 and x = 5. (04 marks)

b) Find
$$\int \frac{\cos 2x}{\sin^2 2x} dx$$
 (04 marks)

- c) Express $f(x) = \frac{5}{(x-2)(x+3)}$ into partial fractions. Hence $\int f(x)dx$ from 0 up to 2 (04 marks)
- 12 a) When a polynomial p(x) is divided by x-1, the remainder is 5 and when p(x) is divided by x-2, the remainder is 7. Find the remainder when the same expression is divided by (x-1)(x-2) (06 marks)
 - b) The roots of the equation $2x^2 + 7x 3 = 0$ are α and β . Find the equation whose roots are $\left(\alpha + \frac{5}{\beta}\right)$ and $\left(\beta + \frac{5}{\alpha}\right)$ (06 marks)
- 13 a) Use Pascal's triangle to expand $(x \frac{1}{x})^5$ (04 marks)
 - b) Use maclaurin's theorem to expand $\sqrt[3]{(1+X)}$, up to x^3 . Hence find the approximate values for $\sqrt[3]{(1.03)}$ correct to four places of decimals. (08 marks)
- 14 a) Find the equation of a plane passing through a point A with a position vector $-2\mathbf{i} + 4\mathbf{k}$ and is perpendicular to the vector $\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$. (04 marks) b) Find the line of intersection of the two planes 4x + 6y + 8z = 2 and x + y + 3z = 0.

(04 marks)

- c) Find the Cartesian equation of a plane passing through A,(1, 1, 1), B(5,0,0) and C(3, 2,1) (04 marks)
- 15 a) Prove that the circles $x^2+y^2+4x-2y-11=0$ and a circle whose radius is 3 and centre C(2,4) are orthogonal. (06 marks)
 - b) Given the parabola $y^2 = 4ax$, determine the point of intersection of the two tangents at P(4,8) and at point Q(6, $\frac{9}{4}$) (06 marks)
- 16 a) solve the differential $x^2 \frac{dy}{dx} + 2xy = 1$ (04 marks)
 - b) The rate at which the temperature of a body reduces is proportional to the amount by which its temperature exceeds that of its surroundings. If the temperature of an object falls from 200° to 100° in 40 minutes, in a surrounding temperature of 10°.
 - i) Prove that after *t minutes*, the temperature, *T* degrees, of the body is given by $T=10+190e^{-kt}$, where $k=\frac{1}{40}In(\frac{19}{9})$
 - ii) Calculate the time it takes to reach 40°. (08 marks)